Igf2r and Igf2 gene expression in androgenetic, gynogenetic, and parthenogenetic preimplantation mouse embryos: absence of regulation by genomic imprinting.

نویسندگان

  • K E Latham
  • A S Doherty
  • C D Scott
  • R M Schultz
چکیده

Genomic imprinting in mammals is believed to result from modifications to chromosomes during gametogenesis that inactivate the paternal or maternal allele. The genes encoding the insulin-like growth factor type 2 (Igf2) and its receptor (Igf2r) are reciprocally imprinted and expressed from the paternal and maternal genomes, respectively, in the fetal and adult mouse. We find that both genes are expressed in androgenetic, gynogenetic, and parthenogenetic preimplantation mouse embryos. These results indicate that inactivation of imprinted genes occurs postfertilization (most likely postimplantation) and that genomic imprinting and gene inactivation are separate processes. We propose that imprinting marks the chromosome so that regulatory factors expressed in cells at later times can recognize the imprint and selectively inactivate the maternal or paternal allele. For these genes, this finding invalidates models of genomic imprinting that require them to be inactive from the time of fertilization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

I-13: Transcriptome Dynamics of Human and Mouse Preimplantation Embryos Revealed by Single Cell RNA-Sequencing

Background: Mammalian preimplantation development is a complex process involving dramatic changes in the transcriptional architecture. However, it is still unclear about the crucial transcriptional network and key hub genes that regulate the proceeding of preimplantation embryos. Materials and Methods: Through single-cell RNAsequencing (RNA-seq) of both human and mouse preimplantation embryos, ...

متن کامل

The developmental fate of androgenetic, parthenogenetic, and gynogenetic cells m chimeric gastnflating mouse embryos

Both a maternal and a paternal genomic contribution are necessary for completion of embryonic development in the mouse. Parthenogenetic embryos, with only a maternally inherited genome, and androgenetic embryos, with only a paternally inherited genome, fail to develop to term, and these two types of isoparental embryos fail in development in characteristic ways. In this paper we describe the co...

متن کامل

Hematopoietic reconstitution with androgenetic and gynogenetic stem cells.

Parthenogenetic embryonic stem (ES) cells with two oocyte-derived genomes (uniparental) have been proposed as a source of autologous tissue for transplantation. The therapeutic applicability of any uniparental cell type is uncertain due to the consequences of genomic imprinting that in mammalian uniparental tissues causes unbalanced expression of imprinted genes. We transplanted uniparental fet...

متن کامل

Analysis of Imprinted Gene Expression in Normal Fertilized and Uniparental Preimplantation Porcine Embryos

In the present study quantitative real-time PCR was used to determine the expression status of eight imprinted genes (GRB10, H19, IGF2R, XIST, IGF2, NNAT, PEG1 and PEG10) during preimplantation development, in normal fertilized and uniparental porcine embryos. The results demonstrated that, in all observed embryo samples, a non imprinted gene expression pattern up to the 16-cell stage of develo...

متن کامل

Unregulated expression of the imprinted genes H19 and Igf2r in mouse uniparental fetuses.

The present study shows that the H19 and Igf2r genes, which are imprinted and expressed solely from maternal alleles, are expressed in an unregulatable manner in mouse uniparental, androgenetic, and parthenogenetic fetuses at day 9.5 of gestation. In the androgenetic fetuses, the H19 and Igf2r genes were respectively expressed at 12 and 40% of the levels in biparental fetuses. In addition, the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genes & development

دوره 8 3  شماره 

صفحات  -

تاریخ انتشار 1994